Fuzzy 2D Maximum Scatter Discriminant Analysis For Feature Extraction
نویسندگان
چکیده
منابع مشابه
Fuzzy Maximum Scatter Discriminant Analysis in Image Segmentation
In this paper, a reformative scatter difference discriminant criterion (SDDC) with fuzzy set theory is studied. The scatter difference between between-class and within-class as discriminant criterion is effective to overcome the singularity problem of the within-class scatter matrix due to small sample size problem occurred in classical Fisher discriminant analysis. However, the conventional SD...
متن کاملUnsupervised Discriminant Projection Analysis for Feature Extraction
This paper develops an unsupervised discriminant projection (UDP) technique for feature extraction. UDP takes the local and non-local information into account, seeking to find a projection that maximizes the non-local scatter and minimizes the local scatter simultaneously. This characteristic makes UDP more intuitive and more powerful than the up-to-date method ocality preserving projection (LP...
متن کاملMaximum likelihood discriminant feature spaces
Linear discriminant analysis (LDA) is known to be inappropriate for the case of classes with unequal sample covariances. In recent years, there has been an interest in generalizing LDA to heteroscedastic discriminant analysis (HDA) by removing the equal within-class covariance constraint. This paper presents a new approach to HDA by defining an objective function which maximizes the class discr...
متن کاملOrthogonal vs. uncorrelated least squares discriminant analysis for feature extraction
In this paper, a new discriminant analysis for feature extraction is derived from the perspective of least squares regression. To obtain great discriminative power between classes, all the data points in each class are expected to be regressed to a single vector, and the basic task is to find a transformation matrix such that the squared regression error is minimized. To this end, two least squ...
متن کاملA multi-manifold discriminant analysis method for image feature extraction
In this paper, we propose a Multi-Manifold Discriminant Analysis (MMDA) method for an image feature extraction and pattern recognition based on graph embedded learning and under the Fisher discriminant analysis framework. In an MMDA, the within-class graph and between-class graph are, respectively, designed to characterize the within-class compactness and the between-class separability, seeking...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy Procedia
سال: 2011
ISSN: 1876-6102
DOI: 10.1016/j.egypro.2011.10.207